Определение вариационных рядов. Составление вариационных рядов Построить вариационный ряд выборки

Определение вариационных рядов. Составление вариационных рядов Построить вариационный ряд выборки


Вариационные ряды: определение, виды, основные характеристики. Методика расчета
моды, медианы, средней арифметической в медико-статистических исследованиях
(показать на условном примере).

Вариационный ряд – это ряд числовых значений изучаемого признака, отличающихся друг от друга по своей величине и расположенных в определенной последовательности(в восходящем или убывающем порядке). Каждое числовое значение ряда называют вариантой (V), а числа, показывающие, как часто встречается та или иная варианта в составе данного ряда, называется частотой (р).

Общее число случаев наблюдений, из которых вариационный ряд состоит, обозначают буквой n. Различие в значении изучаемых признаков называется вариацией. В случае если варьирующий признак не имеет количественной меры, вариацию называют качественной, а ряд распределения – атрибутивным (например, распределение по исходу заболевания, по состоянию здоровья и т.д.).

Если варьирующий признак имеет количественное выражение, такую вариацию называют количественной, а ряд распределения – вариационным.

Вариационные ряды делятся на прерывные и непрерывные – по характеру количественного признака, простые и взвешенные – по частоте встречаемости вариант.

В простом вариационном ряду каждая варианта встречается только один раз (р=1), во взвешенном – одна и та же варианта встречается несколько раз (р>1). Примеры таких рядов будут рассмотрены далее по тексту. Если количественный признак носит непрерывный характер, т.е. между целыми величинами имеются промежуточные дробные величины, вариационный ряд называется непрерывным.

Например: 10,0 – 11,9

14,0 – 15,9 и т.д.

Если количественный признак носит прерывный характер, т.е. отдельные его значения (варианты) отличаются друг от друга на целое число и не имеют промежуточных дробных значений, вариационный ряд называют прерывным или дискретным.

Используя данные предыдущего примера о частоте пульса

у 21 студентов, построим вариационный ряд (табл. 1).

Таблица 1

Распределение студентов-медиков по частоте пульса (уд/мин)

Таким образом, построить вариационный ряд – означает имеющиеся числовые значения (варианты) систематизировать, упорядочить, т.е. расположить в определенной последовательности (в восходящем или убывающем порядке) с соответствующими им частотами. В рассматриваемом примере варианты расположены в восходящем порядке и выражены в виде целых прерывных (дискретных) чисел, каждая варианта встречается несколько раз, т.е. мы имеем дело со взвешенным, прерывным или дискретным вариационным рядом.

Как правило, если число наблюдений в изучаемой нами статистической совокупности не превышает 30, то достаточно все значения изучаемого признака расположить в вариационном ряду в нарастающем, как в табл. 1, или убывающем порядке.

При большом количестве наблюдений (n>30) число встречающихся вариант может быть очень большим, в этом случае составляется интервальный или сгруппированный вариационный ряд, в котором для упрощения последующей обработки и выяснения характера распределения варианты объединены в группы.

Обычно число групповых вариант колеблется от 8 до 15.

Их должно быть не меньше 5, т.к. иначе это будет слишком грубое, чрезмерное укрупнение, что искажает общую картину варьирования и сильно сказывается на точности средних величин. При числе групповых вариант более 20-25 увеличивается точность вычисления средних величин, но существенно искажаются особенности варьирования признака и усложняется математическая обработка.

При составлении сгруппированного ряда необходимо учесть,

− группы вариант должны располагаться в определенном порядке (в восходящем или нисходящем);

− интервалы в группах вариант должны быть одинаковыми;

− значения границ интервалов не должны совпадать, т.к. неясно будет, в какие группы относить отдельные варианты;

− необходимо учитывать качественные особенности собираемого материала при установлении пределов интервалов (например, при изучении веса взрослых людей интервал 3-4 кг допустим, а для детей первых месяцев жизни он не должен превышать 100 г.)

Построим сгруппированный (интервальный) ряд, характеризующий данные о частоте пульса (число ударов в минуту) у 55 студентов-медиков перед экзаменом: 64, 66, 60, 62,

64, 68, 70, 66, 70, 68, 62, 68, 70, 72, 60, 70, 74, 62, 70, 72, 72,

64, 70, 72, 76, 76, 68, 70, 58, 76, 74, 76, 76, 82, 76, 72, 76, 74,

79, 78, 74, 78, 74, 78, 74, 74, 78, 76, 78, 76, 80, 80, 80, 78, 78.

Для построения сгруппированного ряда необходимо:

1. Определить величину интервала;

2. Определить середину, начало и конец групп вариант вариационного ряда.

● Величина интервала (i) определяется по числу предполагаемых групп (r), количество которых устанавливается в зависимости от числа наблюдений (n) по специальной таблице

Число групп в зависимости от числа наблюдений:

В нашем случае, для 55 студентов, можно составить от 8 до 10 групп.

Величина интервала (i) определяется по следующей формуле –

i = V max-V min/r

В нашем примере величина интервала равна 82- 58/8= 3.

Если величина интервала представляет собой дробное число, полученный результат следует округлить до целого числа.

Различают несколько видов средних величин:

● средняя арифметическая,

● средняя геометрическая,

● средняя гармоническая,

● средняя квадратическая,

● средняя прогрессивная,

● медиана

В медицинской статистике наиболее часто пользуются средними арифметическими величинами.

Средняя арифметическая величина (М) является обобщающей величиной, которая определяет то типичное, что характерно для всей совокупности. Основными способами расчета М являются: среднеарифметический способ и способ моментов (условных отклонений).

Среднеарифметический способ применяется для вычисления средней арифметической простой и средней арифметической взвешенной. Выбор способа расчета средней арифметической величины зависит от вида вариационного ряда. В случае простого вариационного ряда, в котором каждая варианта встречается только один раз, определяется средняя арифметическая простая по формуле:

где: М – средняя арифметическая величина;

V – значение варьирующего признака (варианты);

Σ – указывает действие – суммирование;

n – общее число наблюдений.

Пример расчета средней арифметической простой. Частота дыхания (число дыхательных движений в минуту) у 9 мужчин в возрасте 35 лет: 20, 22, 19, 15, 16, 21, 17, 23, 18.

Для определения среднего уровня частоты дыхания у мужчин в возрасте 35 лет необходимо:

1. Построить вариационный ряд, расположив все варианты в возрастающем или убывающем порядке Мы получили простой вариационный ряд, т.к. значения вариант встречаются только один раз.

M = ∑V/n = 171/9 = 19 дыхательных движений в минуту

Вывод. Частота дыхания у мужчин в возрасте 35 лет в среднем равна 19 дыхательным движениям в минуту.

Если отдельные значения вариант повторяются, незачем выписывать в линию каждую варианту, достаточно перечислить встречающиеся размеры вариант (V) и рядом указать число их повторений (р). такой вариационный ряд, в котором варианты как бы взвешиваются по числу соответствующих им частот, носит название – взвешенный вариационный ряд, а рассчитываемая средняя величина – средней арифметической взвешенной.

Средняя арифметическая взвешенная определяется по формуле: M= ∑Vp/n

где n – число наблюдений, равное сумме частот – Σр.

Пример расчета средней арифметической взвешенной.

Длительность нетрудоспособности (в днях) у 35 больных острыми респираторными заболеваниями (ОРЗ), лечившихся у участкового врача на протяжении I-го квартала текущего года составила: 6, 7, 5, 3, 9, 8, 7, 5, 6, 4, 9, 8, 7, 6, 6, 9, 6, 5, 10, 8, 7, 11, 13, 5, 6, 7, 12, 4, 3, 5, 2, 5, 6, 6, 7 дней.

Методика определения средней длительности нетрудоспособности у больных с ОРЗ следующая:

1. Построим взвешенный вариационный ряд, т.к. отдельные значения вариант повторяются несколько раз. Для этого можно расположить все варианты в возрастающем или убывающем порядке с соответствующими им частотами.

В нашем случае варианты расположены в возрастающем порядке

2. Рассчитаем среднюю арифметическую взвешенную по формуле: M = ∑Vp/n = 233/35 = 6,7 дней

Распределение больных с ОРЗ по длительности нетрудоспособности:

Длительность нетрудоспособности (V) Число больных (p) Vp
∑p = n = 35 ∑Vp = 233

Вывод. Длительность нетрудоспособности у больных с острыми респираторными заболеваниями составила в среднем 6,7 дней.

Мода (Мо) – наиболее часто встречающаяся варианта в вариационном ряду. Для распределения, представленного в таблице, моде соответствует варианта, равная 10, она встречается чаще других – 6 раз.

Распределение больных по длительности пребывания на больничной койке (в днях)

V
p

Иногда точную величину моды установить трудно, поскольку в изучаемых данных может существовать несколько наблюдений, встречающихся «наиболее часто».

Медиана (Ме) – непараметрический показатель, делящий вариационный ряд на две равные половины: в обе стороны от медианы располагается одинаковое число вариант.

Например, для распределения, указанного в таблице, медиана равна 10, т.к. по обе стороны от этой величины располагается по 14 вариант, т.е. число 10 занимает центральное положение в этом ряду и является его медианой.

Учитывая, что число наблюдений в этом примере четное (n=34), медиану можно определить таким образом:

Me = 2+3+4+5+6+5+4+3+2/2 = 34/2 = 17

Это означает, что середина ряда приходится на семнадцатую по счету варианту, которой соответствует медиана, равная 10. Для распределения, представленного в таблице, средняя арифметическая равна:

M = ∑Vp/n = 334/34 = 10,1

Итак, для 34 наблюдений из табл. 8, мы получили: Мо=10, Ме=10, средняя арифметическая (М) равна 10,1. В нашем примере все три показателя оказались равными или близкими друг к другу, хотя они совершенно различны.

Средняя арифметическая является результативной суммой всех влияний, в формировании ее принимают участие все без исключения варианты, в том числе и крайние, часто нетипичные для данного явления или совокупности.

Мода и медиана, в отличие от средней арифметической, не зависят от величины всех индивидуальных значений варьирующего признака (значений крайних вариант и степени рассеяния ряда). Средняя арифметическая характеризует всю массу наблюдений, мода и медиана – основную массу

РОССИЙСКАЯ АКАДЕМИЯ НАРОДНОГО ХОЗЯЙСТВА И ГОСУДАРСТВЕННОЙ СЛУЖБЫ при ПРЕЗИДЕНТЕ РОССИЙСКОЙ ФЕДЕРАЦИИ

ОРЛОВСКИЙ ФИЛИАЛ

кафедра математики и математических методов в управлении

Самостоятельная работа

По математике

на тему «Вариационный ряд и его характеристики»

для студентов очного отделения факультета «Экономика и менеджмент»

направления подготовки «Управление персоналом»


Цель работы: Освоение понятий математической статистики и приемов первичной обработки данных.

Пример решения типовых задач.

Задача 1.

Путем опроса получены следующие данные ():

1 2 3 2 2 4 3 3 5 1 0 2 4 3 2 2 3 3 1 3 2 4 2 4 3 3 3 2 0 6

3 3 1 1 2 3 1 4 3 1 7 4 3 4 2 3 2 3 3 1 4 3 1 4 5 3 4 2 4 5

3 6 4 1 3 2 4 1 3 1 0 0 4 6 4 7 4 1 3 5

Необходимо:

1) Составить вариационный ряд (статистическое распределение выборки), предварительно записав ранжированный дискретный ряд вариантов.

2) Построить полигон частот и кумуляту.

3) Составить ряд распределения относительных частот (частостей).

4) Найти основные числовые характеристики вариационного ряда (использовать упрощенные формулы для их нахождения): а) среднюю арифметическую , б) медиану Ме и моду Мо , в) дисперсию s 2 , г) среднее квадратическое отклонение s , д) коэффициент вариации V .

5) Пояснить смысл полученных результатов.

Решение.

1) Для составления ранжированного дискретного ряда вариантов отсортируем данные опроса по величине и расположим их в порядке возрастания

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

5 5 5 5 6 6 6 7 7.

Составим вариационный ряд, записав в первую строку таблицы наблюдаемые значения (варианты), а во вторую соответствующие им частоты (таблица 1)

Таблица 1.

2) Полигон частот представляет собой ломаную, соединяющую точки (х i ; n i ), i =1, 2,…, m , где m X .

Изобразим полигон частот вариационного ряда (рис. 1).

Рис.1. Полигон частот

Кумулятивная кривая (кумулята) для дискретного вариационного ряда представляет ломаную, соединяющую точки (х i ; n i нак ), i =1, 2,…, m .

Найдем накопленные частоты n i нак (накопленная частота показывает, сколько наблюдалось вариантов со значением признака меньшим х ). Найденные значения заносим в третью строку таблицы 1.



Построим кумуляту (рис. 2).

Рис.2. Кумулята

3) Найдем относительные частоты (частости) , где , где m – число различных значений признака X , которые будем вычислять с одинаковой точностью.

Запишем ряд распределения относительных частот (частостей) в виде таблицы 2

Таблица 2

4) Найдем основные числовые характеристики вариационного ряда:

а) Среднюю арифметическую найдем, используя упрощенную формулу:

,

где - условные варианты

Положим с = 3 (одно из средних наблюдаемых значений), k = 1 (разность между двумя соседними вариантами) и составим расчетную таблицу (табл. 3).

Таблица 3.

x i n i u i u i n i u i 2 n i
-3 -12
-2 -26
-1 -14
Сумма -11

Тогда средняя арифметическая

б) Медианой Ме вариационного ряда называется значение признака, приходящееся на середину ранжированного ряда наблюдений. Данный дискретный вариационный ряд содержит четное число членов (n =80), значит, медиана равна полусумме двух серединных вариантов.

Модой Мо вариационного ряда называется вариант, которому соответствует наибольшая частота. Для данного вариационного ряда наибольшая частота n max = 24 соответствует варианту х = 3, значит мода Мо =3.

в) Дисперсию s 2 , которая является мерой рассеяния возможных значений показателя X вокруг своего среднего значения, найдем, используя упрощенную формулу:

, где u i – условные варианты

Промежуточные вычисления также занесем в таблицу 3.

Тогда дисперсия

г) Среднее квадратическое отклонение s найдем по формуле:

.

д) Коэффициент вариации V : (),

Коэффициент вариации является безмерной величиной, поэтому он пригоден для сравнения рассеяния вариационных рядов, варианты которых имеют различную размерность.

Коэффициент вариации

.

5) Смысл полученных результатов заключается в том, что величина характеризует среднее значение признака X в пределах рассматриваемой выборки, то есть среднее значение составило 2,86. Среднее квадратическое отклонение s описывает абсолютный разброс значений показателя X и в данном случае составляет s ≈ 1,55. Коэффициент вариации V характеризует относительную изменчивость показателя X , то есть относительный разброс вокруг его среднего значения , и в данном случае составляет .

Ответ: ; ; ; .

Задача 2.

Имеются следующие данные о собственном капитале 40 крупнейших банков Центральной России:

12,0 49,4 22,4 39,3 90,5 15,2 75,0 73,0 62,3 25,2
70,4 50,3 72,0 71,6 43,7 68,3 28,3 44,9 86,6 61,0
41,0 70,9 27,3 22,9 88,6 42,5 41,9 55,0 56,9 68,1
120,8 52,4 42,0 119,3 49,6 110,6 54,5 99,3 111,5 26,1

Необходимо:

1) Построить интервальный вариационный ряд.

2) Вычислить среднюю выборочную и выборочную дисперсию

3) Найти среднее квадратическое отклонение, и коэффициент вариации.

4) Построить гистограмму частот распределения.

Решение.

1) Выберем произвольное число интервалов, например, 8. Тогда ширина интервала:

.

Составим расчетную таблицу:

Интервал вариант, х k –x k +1 Частота, n i Середина интервала х i Условная варианта, и i и i n i и i 2 n i (и i + 1) 2 n i
10 – 25 17,5 – 3 – 12
25 – 40 32,5 – 2 – 10
40 – 55 47,5 – 1 – 11
55 – 70 62,5
70 – 85 77,5
85 – 100 92,5
100 – 115 107,5
115 – 130 122,5
Сумма – 5

В качестве ложного нуля выбрано значение с= 62,5(эта варианта расположена примерно в середине вариационного ряда).

Условные варианты определяются по формуле

Метод группировок позволяет также измерить вариацию (изменчивость, колеблемость) признаков. При относительно малом числе единиц совокупности вариация измеряется на основе ранжированного ряда единиц, образующих совокупность. Ряд называется ранжированным, если единицы расположены по возрастанию (убыванию) признака.

Однако ранжированные ряды довольно малопоказательны тогда, когда необходима сравнительная характеристика вариации. Кроме того, во многих случаях приходится иметь дело со статистическими совокупностями, состоящими из большого числа единиц, которые практически трудно представить в виде конкретного ряда. В связи с этим для первоначального общего ознакомления со статистическими данными и особенно для облегчения изучения вариации признаков исследуемые явления и процессы обычно объединяют в группы, а результаты группировки оформляют в виде групповых таблиц.

Если в групповой таблице имеется всего две графы - группы по выделенному признаку (варианты) и численности групп (частоты или частости), она называется рядом распределения.

Ряд распределения - простейшая разновидность структурной группировки по одному признаку, отображенная в групповой таблице с двумя графами, в которых содержатся варианты и частоты признака. Во многих случаях с такой структурной группировки, т.е. с составления рядов распределения, начинается изучение исходного статистического материала.

Структурная группировка в виде ряда распределения может быть превращена в подлинную структурную группировку, если выделенные группы будут охарактеризованы не только частотами, но и другими статистическими показателями. Главное предназначение рядов распределения - изучение вариации признаков. Теорию рядов распределения подробно разрабатывает математическая статистика.

Ряды распределения делят на атрибутивные (группировка по атрибутивным признакам, например деление населения по полу, национальности, семейному положению и т.д.) и вариационные (группировка по количественным признакам).

Вариационный ряд представляет собой групповую таблицу, которая содержит две графы: группировку единиц по одному количественному признаку и численность единиц в каждой группе. Интервалы в вариационном ряду образуются обычно равные и закрытые. Вариационным рядом является следующая группировка населения России по величине среднедушевых денежных доходов (табл. 3.10).

Таблица 3.10

Распределение численности населения России по величине среднедушевых доходов в 2004-2009 гг.

Группы населения по величине среднедушевых денежных доходов, руб./мес

Численность населения в группе, в % к итогу

8 000,1-10 000,0

10 000,1-15 000,0

15 000,1-25 000,0

Свыше 25 000,0

Все население

Вариационные ряды в свою очередь подразделяются на дискретные и интервальные. Дискретные вариационные ряды объединяют варианты дискретных признаков, изменяющихся в узких пределах. Примером дискретного вариационного ряда может служить распределение российских семей по числу имеющихся детей.

Интервальные вариационные ряды объединяют варианты либо непрерывных признаков, либо изменяющихся в широких пределах дискретных признаков. Интервальным является вариационный ряд распределения населения России по величине среднедушевых денежных доходов.

Дискретные вариационные ряды на практике применяются не слишком часто. Между тем составление их несложно, поскольку состав групп определяется конкретными вариантами, которыми реально обладают изучаемые группировочные признаки.

Более широко распространены интервальные вариационные ряды. При их составлении возникает сложный вопрос о количестве групп, а также о величине интервалов, которые должны быть установлены.

Принципы решения этого вопроса изложены в главе о методологии построения статистических группировок (см. параграф 3.3).

Вариационные ряды представляют собой средство свертывания или сжатия многообразной информации в компактную форму, по ним можно составить достаточно ясное суждение о характере вариации, изучить различия признаков явлений, входящих в исследуемую совокупность. Но важнейшее значение вариационных рядов состоит в том, что на их основе исчисляются особые обобщающие характеристики вариации (см. главу 7).

Особое место в статистическом анализе принадлежит определению среднего уровня изучаемого признака или явления. Средний уровень признака измеряют средними величинами.

Средняя величина характеризует общий количественный уровень изучаемого признака и является групповым свойством статистической совокупности. Она нивелирует, ослабляет случайные отклонения индивидуальных наблюдений в ту или иную сторону и выдвигает на первый план основное, типичное свойство изучаемого признака.

Средние величины широко используются:

1. Для оценки состояния здоровья населения: характеристики физического развития (рост, вес, окружность грудной клетки и пр.), выявления распространенности и длительности различных заболеваний, анализа демографических показателей (естественного движения населения, средней продолжительности предстоящей жизни, воспроизводства населения, средней численности населения и др.).

2. Для изучения деятельности лечебно-профилактических учреждений, медицинских кадров и оценки качества их работы, планирования и определения потребности населения в различных видах медицинской помощи (среднее число обращений или посещений на одного жителя в год, средняя длительность пребывания больного в стационаре, средняя продолжительность обследования больного, средняя обеспеченность врачами, койками и пр.).

3. Для характеристики санитарно-эпидемиологического состояния (средняя запыленность воздуха в цехе, средняя площадь на одного человека, средние нормы потребления белков, жиров и углеводов и т. д.).

4. Для определения медико-физиологических показателей в норме и патологии, при обработке лабораторных данных, для установления достоверности результатов выборочного исследования в социально-гигиенических, клинических, экспериментальных исследованиях.

Вычисление средних величин выполняется на основе вариационных рядов. Вариационный ряд – это однородная в качественном отношении статистическая совокупность, отдельные единицы которой характеризуют количественные различия изучаемого признака или явления.

Количественная вариация может быть двух типов: прерывная (дискретная) и непрерывная.

Прерывный (дискретный) признак выражается только целым числом и не может иметь никаких промежуточных значений (например, число посещений, численность населения участка, число детей в семье, степень тяжести болезни в баллах и др.).

Непрерывный признак может принимать любые значения в определенных пределах, в том числе и дробные, и выражается лишь приближенно (например, вес – для взрослых можно ограничиться килограммами, а для новорожденных – граммами; рост, артериальное давление, время, потраченное на прием больного, и т. д.).



Цифровое значение каждого отдельного признака или явления, входящего в вариационный ряд, называется вариантой и обозначается буквой V . В математической литературе встречаются и другие обозначения, например x или y.

Вариационный ряд, где каждая варианта указана один раз, называется простым. Такие ряды используются в большинстве статистических задач в случае компьютерной обработки данных.

При увеличении числа наблюдений, как правило, встречаются повторяющиеся значения вариант. В этом случае создается сгруппированный вариационный ряд , где указывается число повторений (частота, обозначается буквой «р »).

Ранжированный вариационный ряд состоит из вариант, расположенных в порядке возрастания или убывания. Как простой, так и сгруппированный ряды могут быть составлены с ранжированием.

Интервальный вариационный ряд составляют с целью упрощения последующих вычислений, выполняемых без использования компьютера, при очень большом числе единиц наблюдения (более 1000).

Непрерывный вариационный ряд включает значения вариант, которые могут выражаться любыми значениями.

Если в вариационном ряде значения признака (варианты) заданы в виде отдельных конкретных чисел, то такой ряд называют дискретным .

Общими характеристиками значений признака, отражаемого в вариационном ряду, являются средние величины. Среди них наиболее применяемые: средняя арифметическая величина М, мода Мо и медиана Me. Каждая из этих характеристик своеобразна. Они не могут подменить друг друга и лишь в совокупности достаточно полно и в сжатой форме представляют собой особенности вариационного ряда.

Модой (Мо) называют значение наиболее часто встречающейся варианты.

Медиана (Me) – это значение варианты, делящей ранжированный вариационный ряд пополам (с каждой стороны медианы находится половина вариант). В редких случаях, когда имеется симметричный вариационный ряд, мода и медиана равны между собой и совпадают со значением средней арифметической.

Наиболее типичной характеристикой значений вариант является средняя арифметическая величина(М ). В математической литературе она обозначается .

Средняя арифметическая величина (M, ) – это общая количественная характеристика определенного признака изучаемых явлений, составляющих качественно однородную статистическую совокупность. Различают среднюю арифметическую простую и взвешенную. Средняя арифметическая простая вычисляется для простого вариационного ряда путем суммирования всех вариант и делением этой суммы на общее количество вариант, входящих в данный вариационный ряд. Вычисления проводятся по формуле:

где: М - средняя арифметическая простая;

ΣV - сумма вариант;

n - число наблюдений.

В сгруппированном вариационном ряду определяют взвешенную среднюю арифметическую. Формула ее вычисления:

где: М - средняя арифметическая взвешенная;

ΣVp - сумма произведений вариант на их частоты;

n - число наблюдений.

При большом числе наблюдений в случае ручных вычислений может применяться способ моментов.

Средняя арифметическая имеет следующие свойства:

· сумма отклонений вариант от средней (Σd ) равна нулю (см. табл. 15);

· при умножении (делении) всех вариант на один и тот же множитель (делитель) средняя арифметическая умножается (делится) на тот же множитель (делитель);

· если прибавить (вычесть) ко всем вариантам одно и то же число, средняя арифметическая увеличивается (уменьшается) на это же число.

Средние арифметические величины, взятые сами по себе, без учета вариабельности рядов, из которых они вычислены, могут не в полной мере отражать свойства вариационного ряда, в особенности когда необходимо сопоставление с другими средними. Близкие по значению средние могут быть получены из рядов с различной степенью рассеяния. Чем ближе друг к другу отдельные варианты по своей количественной характеристике, тем меньше рассеяние (колеблемость, вариабельность) ряда, тем типичнее его средняя.

Основными параметрами, которые позволяют оценить вариабельность признака, являются:

· Размах;

· Амплитуда;

· Среднее квадратическое отклонение;

· Коэффициент вариации.

Приблизительно о колеблемости признака можно судить по размаху и амплитуде вариационного ряда. Размах указывает на максимальную (V max) и минимальную (V min) варианты в ряду. Амплитуда (A m) является разностью этих вариант: A m = V max - V min .

Основной, общепринятой мерой колеблемости вариационного ряда являются дисперсия (D ). Но наиболее часто применяется более удобный параметр, вычисляемый на основе дисперсии - среднее квадратическое отклонение (σ ). Оно учитывает величину отклонения (d ) каждой варианты вариационного ряда от его средней арифметической (d=V - M ).

Поскольку отклонения вариант от средней могут быть положительными и отрицательными, то при суммировании они дают значение «0» (Sd=0 ). Чтобы избежать этого, величины отклонения (d ) возводятся во вторую степень и усредняются. Таким образом, дисперсия вариационного ряда является средним квадратом отклонений вариант от средней арифметической и вычисляется по формуле:

Она является важнейшей характеристикой вариабельности и применяется для вычисления многих статистических критериев.

Поскольку дисперсия выражается квадратом отклонений, ее величина не может использоваться в сопоставлении со средней арифметической. Для этих целей применяется среднее квадратическое отклонение , которое обозначается знаком «Сигма» (σ ). Оно характеризует среднее отклонение всех вариант вариационного ряда от средней арифметической величины в тех же единицах, что и сама средняя величина, поэтому они могут использоваться совместно.

Среднее квадратическое отклонение определяют по формуле:

Указанная формула применяется при числе наблюдений (n ) больше 30. При меньшем числе n значение среднего квадратического отклонения будет иметь погрешность, связанную с математическим смещением (n - 1). В связи с этим, более точный результат может быть получен с помощью учета такого смещения в формуле расчета стандартного отклонения:

стандартное отклонение (s ) – это оценка среднеквадратического отклонения случайной величины Х относительно её математического ожидания на основе несмещённой оценки её дисперсии.

При значениях n > 30 среднее квадратическое отклонение (σ ) и стандартное отклонение (s ) будут одинаковыми (σ =s ). Поэтому в большинстве практических пособий эти критерии рассматриваются как разнозначные. В программе Excel вычисление стандартного отклонения может быть выполнено функцией =СТАНДОТКЛОН(диапазон). А с целью расчета среднего квадратического отклонения требуется создать соответствующую формулу.

Среднее квадратическое или стандартное отклонение позволяет определить, насколько значения признака могут отличаться от среднего значения. Предположим, существуют два города с одинаковой средней дневной температурой в летний период. Один их этих городов расположен на побережье, а другой на континенте. Известно, что в городах, расположенных на побережье, различия дневных температур меньше, чем у городов, расположенных внутри континента. Поэтому среднее квадратическое отклонение дневных температур у прибрежного города будет меньше, чем у второго города. На практике это означает, что средняя температура воздуха каждого конкретного дня в городе, расположенного на континенте будет сильнее отличаться от среднего значения, чем в городе на побережье. Кроме того стандартное отклонение позволяет оценить возможные отклонения температуры от средней с требуемым уровнем вероятности.

Согласно теории вероятности, в явлениях, подчиняющихся нормальному закону распределения, между значениями средней арифметической, среднего квадратического отклонения и вариантами существует строгая зависимость (правило трех сигм ). Например, 68,3% значений варьирующего признака находятся в пределах М ± 1σ , 95,5% - в пределах М ± 2σ и 99,7% - в пределах М ± 3σ .

Величина среднего квадратического отклонения позволяет судить о характере однородности вариационного ряда и исследуемой группы. Если величина среднего квадратического отклонения небольшая, то это свидетельствует о достаточно высокой однородности изучаемого явления. Среднюю арифметическую в таком случае следует признать вполне характерной для данного вариационного ряда. Однако слишком малая величина сигмы заставляет думать об искусственном подборе наблюдений. При очень большой сигме средняя арифметическая в меньшей степени характеризует вариационный ряд, что говорит о значительной вариабельности изучаемого признака или явления или о неоднородности исследуемой группы. Однако сопоставление величины среднего квадратического отклонения возможно только для признаков одинаковой размерности. Действительно, если сравнивать разнообразие веса новорожденных детей и взрослых, мы всегда получим более высокие значения сигмы у взрослых.

Сравнение вариабельности признаков различной размерности может быть выполнено с помощью коэффициента вариации . Он выражает разнообразие в процентах от средней величины, что позволяет производить сравнение различных признаков. Коэффициент вариации в медицинской литературе обозначается знаком «С », а в математической «v » и вычисляемого по формуле:

Значения коэффициента вариации менее 10% свидетельствует о малом рассеянии, от 10 до 20% – о среднем, более 20% – о сильном рассеянии вариант вокруг средней арифметической.

Средняя арифметическая величина, как правило, вычисляется на основе данных выборочной совокупности. При повторных исследованиях под влиянием случайных явлений средняя арифметическая может изменяться. Это обусловлено тем, что исследуется, как правило, только часть возможных единиц наблюдения, то есть выборочная совокупность. Информация обо всех возможных единицах, представляющих изучаемое явление, может быть получена при изучении всей генеральной совокупности, что не всегда возможно. В то же время с целью обобщения данных эксперимента представляет интерес величина средней в генеральной совокупности. Поэтому для формулировки общего вывода об изучаемом явлении, результаты, полученные на основе выборочной совокупности, должны быть, перенесены на генеральную совокупность статистическими методами.

Чтобы определить степень совпадения выборочного исследования и генеральной совокупности, необходимо оценить величину ошибки, которая неизбежно возникает при выборочном наблюдении. Такая ошибка называется «Ошибкой репрезентативности » или «Средней ошибкой средней арифметической». Она фактически является разностью между средними, полученными при выборочном статистическом наблюдении, и аналогичными величинами, которые были бы получены при сплошном исследовании того же объекта, т.е. при изучении генеральной совокупности. Поскольку выборочная средняя является случайной величиной, такой прогноз выполняется с приемлемым для исследователя уровнем вероятности. В медицинских исследованиях он составляет не менее 95%.

Ошибку репрезентативности нельзя смешивать с ошибками регистрации или ошибками внимания (описки, просчеты, опечатки и др.), которые должны быть сведены до минимума адекватной методикой и инструментами, применяемыми при проведении эксперимента.

Величина ошибки репрезентативности зависит как от объема выборки, так и от вариабельности признака. Чем больше число наблюдений, тем ближе выборка к генеральной совокупности и тем меньше ошибка. Чем более изменчив признак, тем больше величина статистической ошибки.

На практике для определения ошибки репрезентативности в вариационных рядах пользуются следующей формулой:

где: m – ошибка репрезентативности;

σ – среднее квадратическое отклонение;

n – число наблюдений в выборке.

Из формулы видно, что размер средней ошибки прямо пропорционален среднему квадратическому отклонению, т. е. вариабельности изучаемого признака, и обратно пропорционален корню квадратному из числа наблюдений.

При выполнении статистического анализа на основе вычисления относительных величин построение вариационного ряда не является обязательным. При этом определение средней ошибки для относительных показателей может выполняться по упрощенной формуле:

где: Р – величина относительного показателя, выраженного в процентах, промилле и т.д.;

q – величина, обратная Р и выраженная как (1-Р), (100-Р), (1000-Р) и т. д., в зависимости от основания, на которое рассчитан показатель;

n – число наблюдений в выборочной совокупности.

Однако, указанная формула вычисления ошибки репрезентативности для относительных величин может применяться только в том случае, когда значение показателя меньше его основания. В ряде случаев расчета интенсивных показателей такое условие не соблюдается, и показатель может выражаться числом более 100% или 1000%о. В такой ситуации выполняется построение вариационного ряда и вычисление ошибки репрезентативности по формуле для средних величин на основе среднего квадратического отклонения.

Прогнозирование величины средней арифметической в генеральной совокупности выполняется с указанием двух значений – минимального и максимального. Эти крайние значения возможных отклонений, в пределах которых может колебаться искомая средняя величина генеральной совокупности, называются «Доверительные границы ».

Постулатами теории вероятностей доказано, что при нормальном распределении признака с вероятностью 99,7%, крайние значения отклонений средней будут не больше величины утроенной ошибки репрезентативности (М ± 3m ); в 95,5% – не больше величины удвоенной средней ошибки средней величины (М ± 2m ); в 68,3% – не больше величины одной средней ошибки (М ± 1m ) (рис. 9).

P%

Рис. 9. Плотность вероятностей нормального распределения.

Отметим, что приведенное выше утверждение справедливо только для признака, который подчиняется нормальному закону распределения Гаусса.

Большинство экспериментальных исследований, в том числе и в области медицины, связано с измерениями, результаты которых могут принимать практически любые значения в заданном интервале, поэтому, как правило, описываются моделью непрерывных случайных величин. В связи с этим в большинстве статистических методов рассматриваются непрерывные распределения. Одним из таких распределений, имеющим основополагающую роль в математической статистике, является нормальное, или гауссово, распределение .

Это объясняется целым рядом причин.

1. Прежде всего, многие экспериментальные наблюдения можно успешно описать с помощью нормального распределения. Следует сразу же отметить, что не существует распределений эмпирических данных, которые были бы в точности нормальными, поскольку нормально распределенная случайная величина находится в пределах от до , чего никогда не встречается на практике. Однако нормальное распределение очень часто хорошо подходит как приближение.

Проводятся ли измерения веса, роста и других физиологических параметров организма человека - везде на результаты оказывает влияние очень большое число случайных факторов (естественные причины и ошибки измерения). Причем, как правило, действие каждого из этих факторов незначительно. Опыт показывает, что результаты именно в таких случаях будут распределены приближенно нормально.

2. Многие распределения, связанные со случайной выборкой, при увеличении объема последней переходят в нормальное.

3. Нормальное распределение хорошо подходит в качестве приближенного описания других непрерывных распределений (например, асимметричных).

4. Нормальное распределение обладает рядом благоприятных математических свойств, во многом обеспечивших его широкое применение в статистике.

В то же время следует отметить, что в медицинских данных встречается много экспериментальных распределений, описание которых моделью нормального распределения невозможно. Для этого в статистке разработаны методы, которые принято называть «Непараметрическими».

Выбор статистического метода, который подходит для обработки данных конкретного эксперимента, должен производиться в зависимости от принадлежности полученных данных к нормальному закону распределения. Проверка гипотезы на подчинение признака нормальному закону распределения выполняется с помощью гистограммы распределения частот (графика), а также ряда статистических критериев. Среди них:

Критерий асимметрии (b );

Критерий проверки на эксцесс (g );

Критерий Шапиро – Уилкса (W ) .

Анализ характера распределения данных (его еще называют проверкой на нормальность распределения) осуществляется по каждому параметру. Чтобы уверенно судить о соответствии распределения параметра нормальному закону, необходимо достаточно большое число единиц наблюдения (не менее 30 значений).

Для нормального распределения критерии асимметрии и эксцесса принимают значение 0. Если распределение смещено вправо b > 0 (положительная асимметрия), при b < 0 - график распределения смещен влево (отрицательная асимметрия). Критерий асимметрии проверяет форму кривой распределения. В случае нормального закона g =0. При g > 0 кривая распределения острее, если g < 0 пик более сглаженный, чем функция нормального распределения.

Для проверки на нормальность по критерию Шапиро – Уилкса требуется найти значение этого критерия по статистическим таблицам при необходимом уровне значимости и в зависимости от числа единиц наблюдения (степеней свободы). Приложение 1. Гипотеза о нормальности отвергается при малых значениях этого критерия, как правило, при w <0,8.

В результате освоения дайной главы студент должен: знать

  • показатели вариации и их взаимосвязь;
  • основные законы распределения признаков;
  • сущность критериев согласия; уметь
  • рассчитывать показатели вариации и критерии согласия;
  • определять характеристики распределений;
  • оценивать основные числовые характеристики статистических рядов распределения;

владеть

  • методами статистического анализа рядов распределения;
  • основами дисперсионного анализа;
  • приемами проверки статистических рядов распределения на соответствие основным законам распределения.

Показатели вариации

При статистическом исследовании признаков различных статистических совокупностей большой интерес представляет изучение вариации признака отдельных статистических единиц совокупности, а также характера распределения единиц по данному признаку. Вариация - это различия индивидуальных значений признака у единиц изучаемой совокупности. Исследование вариации имеет большое практическое значение. По степени вариации можно судить о границах вариации признака, однородности совокупности по данному признаку, типичности средней, взаимосвязи факторов, определяющих вариацию. Показатели вариации используются для характеристики и упорядочения статистических совокупностей.

Результаты сводки и группировки материалов статистического наблюдения, оформленные в виде статистических рядов распределения, представляют собой упорядоченное распределение единиц изучаемой совокупности на группы по группировочному (варьирующему) признаку. Если за основу группировки взят качественный признак, то такой ряд распределения называют атрибутивным (распределение по профессии, по полу, по цвету и т.д.). Если ряд распределения построен по количественному признаку, то такой ряд называют вариационным (распределение по росту, весу, по размеру заработной платы и т.д.). Построить вариационный ряд - значит упорядочить количественное распределение единиц совокупности по значениям признака, подсчитать число единиц совокупности с этими значениями (частоту), результаты оформить в таблицу.

Вместо частоты варианта возможно применение ее отношения к общему объему наблюдений, которое называется частостью (относительной частотой).

Выделяют два вида вариационного ряда: дискретный и интервальный. Дискретный ряд - это такой вариационный ряд, в основу построения которого положены признаки с прерывным изменением (дискретные признаки). К последним можно отнести число работников на предприятии, тарифный разряд, количество детей в семье и т.д. Дискретный вариационный ряд представляет таблицу, которая состоит из двух граф. В первой графе указывается конкретное значение признака, а во второй - число единиц совокупности с определенным значением признака. Если признак имеет непрерывное изменение (размер дохода, стаж работы, стоимость основных фондов предприятия и т.д., которые в определенных границах могут принимать любые значения), то для этого признака возможно построение интервального вариационного ряда. Таблица при построении интервального вариационного ряда также имеет две графы. В первой указывается значение признака в интервале «от - до» (варианты), во второй - число единиц, входящих в интервал (частота). Частота (частота повторения) - число повторений отдельного варианта значений признака. Интервалы могут быть закрытые и открытые. Закрытые интервалы ограничены с обеих сторон, т.е. имеют границу как нижнюю («от»), так и верхнюю («до»). Открытые интервалы имеют какую-либо одну границу: либо верхнюю, либо нижнюю. Если варианты расположены по возрастанию или убыванию, то ряды называются ранжированными.

Для вариационных рядов существует два типа вариантов частотных характеристик: накопленная частота и накопленная частость. Накопленная частота показывает, в скольких наблюдениях величина признака приняла значения меньше заданного. Накопленная частота определяется путем суммирования значений частоты признака по данной группе со всеми частотами предшествующих групп. Накопленная частость характеризует удельный вес единиц наблюдения, у которых значения признака не превосходят верхнюю границу дайной группы. Таким образом, накопленная частость показывает удельный вес вариант в совокупности, имеющих значение не больше данного. Частота, частость, абсолютная и относительная плотности, накопленные частота и частость являются характеристиками величины варианта.

Вариации признака статистических единиц совокупности, а также характер распределения изучаются с помощью показателей и характеристик вариационного ряда, к числу которых относятся средний уровень ряда, среднее линейное отклонение, среднее квадратическое отклонение, дисперсия, коэффициенты осцилляции, вариации, асимметрии, эксцесса и др.

Для характеристики центра распределения применяются средние величины. Средняя представляет собой обобщающую статистическую характеристику, в которой получает количественное выражение типичный уровень признака, которым обладают члены изучаемой совокупности. Однако возможны случаи совпадения средних арифметических при разном характере распределения, поэтому в качестве статистических характеристик вариационных рядов рассчитываются так называемые структурные средние - мода, медиана, а также квантили, которые делят ряд распределения на равные части (квартили, децили, перцентили и т.д.).

Мода - это значение признака, которое встречается в ряду распределения чаще, чем другие его значения. Для дискретных рядов - это варианта, имеющая наибольшую частоту. В интервальных вариационных рядах с целью определения моды необходимо определить прежде всего интервал, в котором она находится, так называемый модальный интервал. В вариационном ряду с равными интервалами модальный интервал определяется по наибольшей частоте, в рядах с неравными интервалами - но наибольшей плотности распределения. Затем для определения моды в рядах с равными интервалами применяют формулу

где Мо - значение моды; х Мо - нижняя граница модального интервала; h - ширина модального интервала; / Мо - частота модального интервала; / Mo j - частота домодального интер- вала; / Мо+1 - частота послемодального интервала, а для ряда с неравными интервалами в данной формуле расчета вместо частот / Мо, / Мо, / Мо следует использовать плотности распределения Ум 0 _| , Ум 0> УМо+"

Если имеется единственная мода, то распределение вероятностей случайной величины называется унимодальным; если имеется более чем одна мода, оно называется многомодальным (полимодальным, мультимодальным), в случае двух мод - бимодальным. Как правило, многомодальность указывает, что исследуемое распределение не подчиняется закону нормального распределения. Для однородных совокупностей, как правило, характерны одновершинные распределения. Многовершинность свидетельствует также о неоднородности изучаемой совокупности. Появление двух и более вершин делает необходимой перегруппировку данных с целью выделения более однородных групп.

В интервальном вариационном ряду моду можно определить графически с помощью гистограммы. Для этого из верхних точек самого высокого столбца гистограммы до верхних точек двух смежных столбцов проводят две пересекающиеся линии. Затем из точки их пересечения опускают перпендикуляр на ось абсцисс. Значение признака на оси абсцисс, соответствующее перпендикуляру, является модой. Во многих случаях при характеристике совокупности в качестве обобщенного показателя отдается предпочтение моде, а не средней арифметической.

Медиана - это центральное значение признака, им обладает центральный член ранжированного ряда распределения. В дискретных рядах, чтобы найти значение медианы, сначала определяется ее порядковый номер. Для этого при нечетном числе единиц к сумме всех частот прибавляется единица, число делится на два. При четном числе единиц в ряду будет две медианные единицы, поэтому в этом случае медиана определяется как средняя из значений двух медианных единиц. Таким образом, медианой в дискретном вариационном ряду является значение, которое делит ряд на две части, содержащие одинаковое число вариантов.

В интервальных рядах после определения порядкового номера медианы отыскивается медиальный интервал по накопленным частотам (частостям), а затем при помощи формулы расчета медианы определяется значение самой медианы:

где Me - значение медианы; х Ме - нижняя граница медианного интервала; h - ширина медианного интервала; - сумма частот ряда распределения; /Д - накопленная частота домедианного интервала; / Ме - частота медианного интервала.

Медиану можно отыскать графически с помощью куму- ляты. Для этого на шкале накопленных частот (частостей) кумуляты из точки, соответствующей порядковому номеру медианы, проводится прямая, параллельная оси абсцисс, до пересечения с кумулятой. Далее из точки пересечения указанной прямой с кумулятой опускается перпендикуляр на ось абсцисс. Значение признака на оси абсцисс, соответствующее проведенной ординате (перпендикуляру), является медианой.

Медиана характеризуется следующими свойствами.

  • 1. Она не зависит от тех значений признака, которые расположены по обе стороны от нее.
  • 2. Она имеет свойство минимальности, которое заключается в том, что сумма абсолютных отклонений значений признака от медианы представляет собой минимальную величину по сравнению с отклонением значений признака от любой другой величины.
  • 3. При объединении двух распределений с известными медианами невозможно заранее предсказать величину медианы нового распределения.

Эти свойства медианы широко используются при проектировании расположения пунктов массового обслуживания - школ, поликлиник, автозаправочных станций, водозаборных колонок и т.д. Например, если в определенном квартале города предполагается построить поликлинику, то расположить ее целесообразнее в такой точке квартала, которая делит пополам не длину квартала, а число жителей.

Соотношение моды, медианы и средней арифметической указывает на характер распределения признака в совокупности, позволяет оценить симметричность распределения. Если х Me то имеет место правосторонняя асимметрия ряда. При нормальном распределении х - Me - Мо.

К. Пирсон на основе выравнивания различных типов кривых определил, что для умеренно асимметричных распределений справедливы такие приближенные соотношения между средней арифметической, медианой и модой:

где Me - значение медианы; Мо - значение моды; х арифм - значение средней арифметической.

Если возникает необходимость изучить структуру вариационного ряда более подробно, то вычисляют значения признака, аналогичные медиане. Такие значения признака делят все единицы распределения на равные численности, их называют квантилями или градиентами. Квантили подразделяются на квартили, децили, перцентили и т.п.

Квартили делят совокупность на четыре равные части. Первую квартиль вычисляют аналогично медиане по формуле расчета первой квартили, предварительно определив первый квартальный интервал:

где Qi - значение первой квартили; x Q ^ - нижняя граница первого квартильного интервала; h - ширина первого квартального интервала; /, - частоты интервального ряда;

Накопленная частота в интервале, предшествующем первому квартильиому интервалу; Jq { - частота первого квартильного интервала.

Первая квартиль показывает, что 25% единиц совокупности меньше ее значения, а 75% - больше. Вторая квартиль равна медиане, т.е. Q 2 = Me.

По аналогии рассчитывают третью квартиль, предварительно отыскав третий квартальный интервал:

где - нижняя граница третьего квартильного интервала; h - ширина третьего квартильного интервала; /, - частоты интервального ряда; /X" - накопленная частота в интервале, предшествующем

г

третьему квартильиому интервалу; Jq - частота третьего квартильного интервала.

Третья квартиль показывает, что 75% единиц совокупности меньше ее значения, а 25% - больше.

Разность между третьей и первой квартилями представляет собой межквартильный интервал:

где Aq - значение межквартильного интервала; Q 3 - значение третьей квартили; Q, - значение первой квартили.

Децили делят совокупность на 10 равных частей. Дециль - это такое значение признака в ряду распределения, которому соответствуют десятые доли численности совокупности. По аналогии с квартилями первый дециль показывает, что 10% единиц совокупности меньше его значения, а 90% - больше, а девятый дециль выявляет, что 90% единиц совокупности меньше его значения, а 10% - больше. Соотношение девятого и первого децилей, т.е. децильный коэффициент, широко применяется при изучении дифференциации доходов для измерения соотношения уровней доходов 10% наиболее обеспеченного и 10% наименее обеспеченного населения. Перцентили делят ранжированную совокупность на 100 равных частей. Расчет, значение и применение перцентилей аналогичны децилям.

Квартили, децили и другие структурные характеристики можно определить графически по аналогии с медианой с помощью кумуляты.

Для измерения размера вариации используются следующие показатели: размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, дисперсия. Величина размаха вариации целиком зависит от случайности распределения крайних членов ряда. Этот показатель представляет интерес в тех случаях, когда важно знать, какова амплитуда колебаний значений признака:

где R - значение размаха вариации; х тах - максимальное значение признака; х тт - минимальное значение признака.

При расчете размаха вариации значение подавляющего большинства членов ряда не учитывается, в то время как вариация связана с каждым значением члена ряда. Этого недостатка лишены показатели, представляющие собой средние, полученные из отклонений индивидуальных значений признака от их средней величины: среднее линейное отклонение и среднее квадратическое отклонение. Между индивидуальными отклонениями от средней и колеблемостью конкретного признака существует прямая зависимость. Чем сильнее колеблемость, тем больше абсолютные размеры отклонений от средней.

Среднее линейное отклонение представляет собой среднюю арифметическую из абсолютных величин отклонений отдельных вариантов от их средней величины.

Среднее линейное отклонение для несгруппированных данных

где / пр - значение среднего линейного отклонения; х,- - значение признака; х - п - число единиц совокупности.

Среднее линейное отклонение сгруппированного ряда

где / вз - значение среднего линейного отклонения; х, - значение признака; х - среднее значение признака для изучаемой совокупности; / - число единиц совокупности в отдельной группе.

Знаки отклонений в данном случае игнорируются, в противном случае сумма всех отклонений будет равна нулю. Среднее линейное отклонение в зависимости от группировки анализируемых данных рассчитывается по различным формулам: для сгруппированных и несгруниированных данных. Среднее линейное отклонение в силу его условности отдельно от других показателей вариации применяется на практике сравнительно редко (в частности, для характеристики выполнения договорных обязательств по равномерности поставки; в анализе оборота внешней торговли, состава работающих, ритмичности производства, качества продукции с учетом технологических особенностей производства и т.п.).

Среднее квадратическое отклонение характеризует, на сколько в среднем отклоняются индивидуальные значения изучаемого признака от среднего значения по совокупности, и выражается в единицах измерения изучаемого признака. Среднее квадратическое отклонение, являясь одной из основных мер вариации, широко используется при оценке границ вариации признака в однородной совокупности, при определении значений ординат кривой нормального распределения, а также в расчетах, связанных с организацией выборочного наблюдения и установлением точности выборочных характеристик. Среднее квадратическое отклонение но несгруипированным данным исчисляется по следующему алгоритму: каждое отклонение от средней возводится в квадрат, все квадраты суммируются, после чего сумма квадратов делится на число членов ряда и из частного извлекается квадратный корень:

где a Iip - значение среднего квадратического отклонения; Xj - значение признака; х - среднее значение признака для изучаемой совокупности; п - число единиц совокупности.

Для сгруппированных анализируемых данных среднее квадратическое отклонение данных рассчитывается по взвешенной формуле

где - значение среднего квадратического отклонения; Xj - значение признака; х - среднее значение признака для изучаемой совокупности; f x - число единиц совокупности в отдельной группе.

Выражение под корнем в обоих случаях носит название дисперсии. Таким образом, дисперсия вычисляется как средний квадрат отклонений значений признака от их средней величины. Для невзвешенных (простых) значений признака дисперсия определяется следующим образом:

Для взвешенных значений признака

Существует также специальный упрощенный способ расчета дисперсии: в общем виде

для невзвешенных (простых) значений признака для взвешенных значений признака
с использованием метода отсчета от условного нуля

где а 2 - значение дисперсии; х,- - значение признака; х - среднее значение признака, h - величина группового интервала, т 1 - веса (А =

Дисперсия имеет самостоятельное выражение в статистике и относится к числу важнейших показателей вариации. Она измеряется в единицах, соответствующих квадрату единиц измерения изучаемого признака.

Дисперсия имеет следующие свойства.

  • 1. Дисперсия постоянной величины равна нулю.
  • 2. Уменьшение всех значений признака на одну и ту же величину Л не меняет величины дисперсии. Это означает, что средний квадрат отклонений можно вычислить не по заданным значениям признака, а по отклонениям их от какого-то постоянного числа.
  • 3. Уменьшение веех значений признака в k раз уменьшает дисперсию в k 2 раз, а среднее квадратическое отклонение - в k раз, т.е. все значения признака можно разделить на какое-то постоянное число (скажем, на величину интервала ряда), исчислить среднее квадратическое отклонение, а затем умножить его на постоянное число.
  • 4. Если исчислить средний квадрат отклонений от любой величины А у в той или иной степени отличающейся от средней арифметической, то он всегда будет больше среднего квадрата отклонений, исчисленного от средней арифметической. Средний квадрат отклонений при этом будет больше на вполне определенную величину - на квадрат разности средней и этой условно взятой величины.

Вариация альтернативного признака заключается в наличии или отсутствии изучаемого свойства у единиц совокупности. Количественно вариация альтернативного признака выражается двумя значениями: наличие у единицы изучаемого свойства обозначается единицей (1), а его отсутствие - нулем (0). Долю единиц, обладающих изучаемым свойством, обозначают через Р, а долю единиц, не обладающих этим свойством, - через G. Таким образом, дисперсия альтернативного признака равна произведению доли единиц, обладающих данным свойством (Р), на долю единиц, данным свойством не обладающих (G). Наибольшая вариация совокупности достигается в случаях, когда часть совокупности, составляющая 50% от всего объема совокупности, обладает признаком, а другая часть совокупности, также равная 50%, не обладает данным признаком, при этом дисперсия достигает максимального значения, равного 0,25, т.е. Р = 0,5, G = 1 - Р = 1 - 0,5 = 0,5 и о 2 = 0,5 0,5 = 0,25. Нижняя граница этого показателя равна нулю, что соответствует ситуации, при которой в совокупности отсутствует вариация. Практическое применение дисперсии альтернативного признака состоит в построении доверительных интервалов при проведении выборочного наблюдения.

Чем меньше значение дисперсии и среднего квадратического отклонения, тем однороднее совокупность и тем более типичной будет средняя величина. В практике статистики часто возникает необходимость сравнения вариаций различных признаков. Например, интересным является сравнение вариаций возраста рабочих и их квалификации, стажа работы и размера заработной платы, себестоимости и прибыли, стажа работы и производительности труда и т.д. Для таких сопоставлений показатели абсолютной колеблемости признаков непригодны: нельзя сравнивать колеблемость стажа работы, выраженного в годах, с вариацией заработной платы, выраженной в рублях. Для осуществления таких сравнений, а также сравнений колеблемости одного и того же признака в нескольких совокупностях с разными средними арифметическими используются показатели вариации - коэффициент осцилляции, линейный коэффициент вариации и коэффициент вариации, которые показывают меру колебаний крайних значений вокруг средней.

Коэффициент осцилляции :

где V R - значение коэффициента осцилляции; R - значение размаха вариации; х -

Линейный коэффициент вариации".

где Vj - значение линейного коэффициента вариации; I - значение среднего линейного отклонения; х - среднее значение признака для изучаемой совокупности.

Коэффициент вариации :

где V a - значение коэффициента вариации; а - значение среднего квадратического отклонения; х - среднее значение признака для изучаемой совокупности.

Коэффициент осцилляции - это процентное отношение размаха вариации к среднему значению изучаемого признака, а линейный коэффициент вариации - это отношение среднего линейного отклонения к среднему значению изучаемого признака, выраженное в процентах. Коэффициент вариации представляет собой процентное отношение среднего квадратического отклонения к среднему значению изучаемого признака. Как величина относительная, выраженная в процентах, коэффициент вариации применяется для сравнения степени вариации различных признаков. С помощью коэффициента вариации оценивается однородность статистической совокупности. Если коэффициент вариации меньше 33%, то исследуемая совокупность является однородной, а вариация слабой. Если коэффициент вариации больше 33%, то исследуемая совокупность является неоднородной, вариация сильной, а средняя величина - нетипичной и ее нельзя использовать как обобщающий показатель этой совокупности. Кроме того, коэффициенты вариации используются для сравнения колеблемости одного признака в различных совокупностях. Например, для оценки вариации стажа работы работников на двух предприятиях. Чем больше значение коэффициента, тем вариация признака существеннее.

На основе рассчитанных квартилей имеется возможность рассчитать также относительный показатель квартальной вариации по формуле

где Q2 и

Межквартильный размах определяется по формуле

Квартильное отклонение применяется вместо размаха вариации, чтобы избежать недостатков, связанных с использованием крайних значений:

Для неравноинтервальпых вариационных рядов рассчитывается также плотность распределения. Она определяется как частное от деления соответствующей частоты или частости на величину интервала. В неравноинтервальных рядах используются абсолютная и относительная плотности распределения. Абсолютная плотность распределения - это частота, приходящаяся на единицу длины интервала. Относительная плотность распределения - частость, приходящаяся на единицу длины интервала.

Все вышеотмеченное справедливо для рядов распределения, закон распределения которых хорошо описывается нормальным законом распределения или близок к нему.